
The DevSecOps Approach
Using AppSec Statistics to Drive Better Outcomes

2019  |  APPLICATION SECURITY STATISTICS REPORT VOL. 14



© 2019 WhiteHat Security, Inc. 1

Foreword	 2

Why Read this report	 3

Executive Summary	 5

Key Takeaways	 6

WhiteHat’s Methodology	 7

Three-Phased DevSecOps Approach for Secure Applications	 8

PHASE 1: Risk Discovery and Management	 9

Goals, Actions, & Metrics	 9

Analysis & Insight	 10

Typical DevSecOps Outcomes	 12

Additional Insights	 13

Mobile Application Security Testing	 16

PHASE 2: Release Assurance	 18

Goals, Actions, & Metrics	 18

Analysis & Insight	 19

Typical DevSecOps Outcomes	 21

PHASE 3: Developer Enablement	 23

Goals, Actions, & Metrics	 23

Analysis & Insight	 24

Typical DevSecOps Outcomes	 24

Lessons Learned	 26

Recommendations	 27

Innovation in Application Security	 28

Appendix - Glossary of Terms	 29

Table of Contents



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.2

Foreword

WhiteHat Security is now a wholly-owned, independent subsidiary of NTT Security. With this strategic 
development, we are able to combine the global reach of NTT with WhiteHat’s deep expertise in 
application security. As a result, our research now offers the most comprehensive perspective on the 
current state of application security, as well as recommendations on how to implement DevSecOps 
effectively.

Web applications are under constant attack. In fact, according to the 2019 NTT Global Threat Intelligence 
Report, application-specific and web-application attacks comprise over 32% of all threats, earning the 
top category of attack activity¹. Unfortunately, businesses continue to struggle against this rising tide, 
especially as 43% of organizations globally say they do not have adequate resources or skills in-house to 
cope with the number of security threats.²

There is hope on the horizon, however, in the form of a robust DevSecOps approach. By embedding 
application security testing at each stage of the software lifecycle, organizations are now able to 
make demonstrable improvement in app security and significantly reduce time to delivery of secure 
applications. WhiteHat Security’s application security platform provides the foundational DevSecOps 
capabilities (DAST, SAST & SCA) that organizations require at each stage of their software lifecycle – 
enabling innovation and security to thrive simultaneously.

The 2019 WhiteHat Application Security Statistics report looks at our underlying application security 
data to derive conclusions, identify trends and highlight what’s working and what’s not when it comes to 
DevSecOps and secure application delivery. This 2019 report is the product of data analysis derived from 
evaluating data from approximately 17 million application security scans performed by organizations in 
2018.

This report shows that organizations that succeeded in improving their security posture last year are 
those that have embraced a robust, three-phased DevSecOps approach, where application security 
testing is embedded into each stage of the development lifecycle. With this level of insight and control, 
business leaders can orchestrate better risk outcomes for their applications and their businesses.

This year, we are also including a short section on innovation in application security. With artificial 
intelligence and machine learning becoming industrially viable, there is hope that accuracy, speed and 
guidance no longer need to be mutually exclusive.

Craig Hinkley 
CEO, WhiteHat Security

¹ 83% of businesses are sinking or only treading water against the rising tide of cyber security threats. Source: 2019 NTT Security Global Threat Intelligence Report

² Source: NTT Risk:Value report 2019

Matthew Gyde 
CEO, NTT Security



© 2019 WhiteHat Security, Inc. 3

Why Read this Report

Application Security has become critical to business success 
The cliché ‘there’s an app for that’ underlies today’s business maxim: applications are at the foundation 
of today’s enterprise. Whether they’re managed in-house or delivered via your service provider, their 
availability, reliability, and scalability are table stakes for business success – across industries and 
geographies. As the digital transformation continues, organizations are beginning to realize that security 
is not merely another table stake, it’s the timber the rest of the organization is built upon.

Pace and rate of change in today's application development are 
blindingly fast
Apps are now the way to out-innovate competition across industries which is why teams are increasingly 
focused on time-to-market and time-to-value when it comes to application development. Each Line of 
Business (LOB) is driving its own app development, putting pressure on DevOps to scale operations – 
“more apps, and more apps now.” In response, application development techniques are rapidly evolving: 
cloud, microservices and APIs are good examples, with new architectures coming online faster than ever 
before. In the midst of this chaotic change, most agree that understanding and addressing security is 
essential. Yet, remediating all vulnerabilities for apps that are already online remains an elusive task.

Security & DevOps are converging – and an approach for 
success has emerged
By analyzing trends in application security results and their impact over the years, this report will help 
global organizations improve their app security year-over-year. Part of this effort involves facilitation 
and active cooperation between IT security and DevOps teams. The phased approach to DevSecOps 
we outline in this year’s report is a macro-trend that supports the Security and DevOps convergence, 
and empowers teams to deliver better performing and more secure apps – and meet the goal of rapid 
innovation and reliable service delivery.



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.4

This report is essential reading for executives, security 
practitioners and development teams who want to better 
understand the present state of software security risk, 
and who seek to benchmark and improve their own 
organization’s performance.

For Business 
Decision Makers… 

How to measure 
the effectiveness 
of your application 
security investments 
in helping to mitigate 
overall business risk.

For Security 
Professionals… 

How to best defend 
your applications by 
evaluating how your 
vulnerability levels 
and remediation 
times compare with 
industry benchmarks.

For Application 
Development and 
Operation Teams… 

How to develop 
software more securely 
by partnering with 
the security team in 
adopting technologies 
and methodologies 
compliant with your 
software lifecycle 
(SLC).



© 2019 WhiteHat Security, Inc. 5

Executive Summary
The Application Security Statistics report is an annual study. In addition to examining 
how organizations are faring in their efforts to secure traditional applications, we also 
examine how effective organizations are in securing modern applications built using 
Agile development frameworks, microservices, APIs, and cloud architectures. In fact, 
last year we took our first look at how these evolutionary changes in the SLC have 
impacted application security.

This year, we’re able to share the specific metrics, goals, and tactics for implementing 
a DevSecOps approach that results in positive business outcomes for your 
application security program. We’ll share year-over-year data analysis that shows 
how implementing a DevSecOps framework results in improving application security 
and reducing risks, costs, and complexity – all while accelerating application service 
delivery and resilience.

Sadly, enterprises are too often the exception to the rule when it comes to application 
security. Most enterprises still suffer from unmet needs created from team inertia, 
lack of coordination, and legacy procedures. While technological advances offer the 
promise of increased efficiency and performance, inadequate application security 
approaches expose organizations to risks (e.g. vulnerable applications, data breaches, 
etc.)

This report offers a three-phased approach to application security that has been 
proven to succeed. In addition to providing the latest statistics on the biggest 
application security threats, this report offers a DevSecOps framework that builds 
cross-team consensus on how secure applications are developed, monitored, and 
measured. Additionally, we'll demonstrate how our suite of application security 
products and services delivers the specific functionality to support this robust 
DevSecOps framework for enhanced operations and security.



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.6
³ According to a 2018 DevSecOps Community Survey, nearly one-half of developers say they don’t have enough time to spend on security, even 

though they are aware of its importance. Source: https://www.whitehatsec.com/blog/partnership-with-rsi-eases-burden-of-remediation-on-devsecops/

The effort required to 
secure the rapidly growing 
volume of existing and 
new applications is 
overwhelming already 
short-staffed teams. 
Expanded app testing is an encouraging sign, 
yet remediation/mitigation rates continue to 
fall. An increased awareness of application 
security risks has naturally expanded the 
scope of applications being tested. In fact, in 
a single year, we saw a 20% increase in the 
number of apps organizations are testing. At 
the same time, however, remediation rates 
have fallen, which is a huge concern. The 
limited pool of global application security 
professionals exacerbates the situation due 
to a constant shortage of skills and resources 
required to keep up with 
remediation/mitigation needs.

AppSec investment is unbalanced across 
Development, Security and Operations. 
While security teams are taking on more accountability, responsibility, and 
producing more results, they don’t have the adequate resourcing or subject 
matter expertise in engineering and operations to remediate or mitigate 
found vulnerabilities³. End-to-end AppSec requires adequate funding for 
all functions involved in the production of applications from Development 
to Security to Operations. The lack of balanced funding results in poor 
application security outcomes as organizations are unable to fix software 
vulnerabilities that are found during application security testing.

Organizations that scan applications 
in production have a reduced risk of 
being breached. 
Most growing organizations have an ever-expanding attack 
surface due to the large number of new applications as 
well as the large number of legacy applications they have 
in production. Organizations that adopt continuous DAST 
testing in production, integrated with the 
software lifecycle, have demonstrably lower 
risk of being breached in production.

Organizations that embed security in 
DevOps are able to reduce risk, reduce 
cost and improve time-to-market. 
In addition to reaping much higher fix rates for vulnerabilities, 
they are also able to shrink overall exposure in terms of time-
to-fix (TTF) for the same vulnerability types in production apps. 
Faster risk reduction means more uptime, better performance, 
and happier end users. Plus, developers learn that better 
security can also mean fewer headaches now 
and in the future.

Embeddable components within the software supply 
chain account for 1/3 of all AppSec vulnerabilities. 
Unpatched libraries continue to be the most prevalent vulnerability discovered by 
Software Composition Analysis (SCA) testing. In a single year, we have witnessed 
over a 50% increase in unpatched library vulnerabilities. This points to a dangerous 
trend that we see continuing to snowball. As more open source and third-party 
software is embedded, it’s creating an inherently insecure environment for 
production apps - more than 1/3 of all AppSec risks are inherited rather than written. 
If software vendors producing embeddable components improved their security 
standards, it would have positive cascading security outcomes throughout the rest of 
the global application landscape.

KEY TAKEAWAYS

Customers are scanning 20% 
more apps yet remediation 
rates are still falling.

In a single year, 
we saw over a 
50% increase in 
unpatched library 
vulnerabilities.

https://www.whitehatsec.com/blog/partnership-with-rsi-eases-burden-of-remediation-on-devsecops/


© 2019 WhiteHat Security, Inc. 7

WhiteHat’s Methodology
WhiteHat Security has been publishing this report since 2006. The study comprises statistical data and analysis gathered 
from continuously updated security testing information in WhiteHat Sentinel™, a cloud-based application security platform.

The conclusions in this report are analyzed from aggregated results of approximately 17 Million application security scans 
performed by WhiteHat’s Application Security Testing platform, Sentinel. Sentinel inspects the full spectrum of applications, 
including components and shared libraries.

The report’s statistical analysis focuses exclusively on assessment and remediation data obtained as a result of application 
security tests performed by WhiteHat Security. Data is segmented along multiple dimensions including vulnerability 
risk levels, vulnerability classes, and industries. Data analysis uses key indicators that include the likelihood of a given 
vulnerability class, remediation rates, time-to-fix, and age of open vulnerabilities.

Risk levels are based on the rating methodology of Open Web Application Security Project (OWASP). Vulnerabilities are 
rated on five levels of risk – Critical, High, Medium, Low and Note. Critical and high-risk vulnerabilities taken together 
are referred to as “serious” vulnerabilities. Vulnerability classes are based on the threat classification of Web Application 
Security Consortium (WASC).

In this section of the report, we compare the overall data set (including all application security data irrespective of 
assessment technique for the application) with a “DevSecOps” data set (including application security data where at least 
two assessment techniques are applied and a phased DevSecOps program was implemented).

The methodology used to produce the 14th edition 
of the report ensures the following:

VERACITY
Data accuracy of 99.9% due to artificial 
& human intelligence. Ninety percent 
of our DAST scanning is of production 
websites, which include some of the 
world’s most important web applications

VARIETY
Approximately 17 million 
application security scans 
for over 800 customers, 
many in the Fortune 100

VOLUME
One million-plus 
vulnerabilities analyzed 
and over a trillion of 
lines of code tested



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.8

Three-Phased DevSecOps 
Approach for Secure 
Applications
“If you can’t measure it, you can’t improve it.”
– Peter Drucker, The Practice of Management

The DevSecOps approach outlined in this report is based on the core principle of effective business practices for software 
development. It prioritizes risk discovery and effective risk mitigation.

Unless and until you can measure something, you can’t make it better. Or, in our case, more secure. At each stage of the 
software lifecycle, capturing core metrics like those we outline in the DevSecOps approach will offer advanced insight into 
how applications are already at risk or can be exposed to risks, even when they are in production. These metrics offer the 
chance to make adjustments when they are far less costly to the organization.

This phased approach to DevSecOps that has quantifiable success within our customer base offers a 
clear roadmap for:

1.	 Comprehensively addressing the diverging needs of existing in-production applications and an 
increasing number of new applications coming online

2.	 Implementing application security in a programmatic manner with verifiable metrics for tracking success

3.	 Embedding security into the fabric of the application development process

Risk Discovery and 
Management

KEY METRICS:

•	 Window of Exposure

•	 Time-to-Fix by Risk
•	 Remediation Rates by Risk

Release Assurance

KEY METRICS:

•	 Average Time-to-Fix (SAST)
•	 Remediation Rate by Risk (SAST)
•	 Vulnerability Prevalence by Class 

(SAST)

Developer Enablement

KEY METRICS:

•	 Vulnerability Prevalence by Class 
(DAST and SAST)

•	 Remediation Rates by Risk 
(DAST and SAST)

PHASE 2PHASE 1 PHASE 3



© 2019 WhiteHat Security, Inc. 9

Risk Discovery and Management

Incorporate DAST to discover risk and use the following application security metrics as key performance indicators to 
measure your success over time.

During this phase, the organization is focused on discovering exploitable risks in the application in its current released 
state. The findings will contribute to the organization’s top line risk metric for the application. They will also form the basis 
of comparison and analysis for the purpose of planning and prioritizing remediation initiatives, as well as providing the 
canonical data model for release assurance and developer enablement activities.

Organizations that have implemented the three-phased DevSecOps approach have 
reduced their Window of Exposure for apps that are always vulnerable to an average 
of 22%⁴. An average of more than 50% of apps are always vulnerable for organizations 
that have not adopted DevSecOps.

PHASE 1

⁴ Considering that this population of apps represents more than 35 million lines of code, reducing the WoE by 
this amount has significant downstream benefits for reducing the overall risk surface area for the enterprise.

GOALS

ACTIONS

METRICS

Window of Exposure 
The “Window of Exposure” metric represents the amount of time that an application has a serious 
vulnerability that can be exploited to data breaches. Develop an SLA for “Window of Exposure” for your 
organization and aggressively try to reduce it for all your applications.

Time-to-Fix by Risk 
The “Time-to-Fix by Risk” metric provides an industry baseline for how long it takes to fix a vulnerability 
and associates that with risk (to the organization). Develop an SLA for “Time-to-Fix by Risk” for your 
organization and work aggressively to reduce it for vulnerabilities in your applications.

Remediation Rate by Risk 
The “Remediation Rate by Risk” metric represents the percentage of vulnerabilities that are fixed, 
organized by level of risk. Develop SLAs and procedures/training to support the SLAs that promote 
remediation efforts by taking a risk-based approach. Track the “DAST and SAST Remediation by Risk” 
metrics to see that the most serious vulnerabilities are being prioritized for remediation.



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.

P
H

A
SE

 1

10

Analysis & Insight

Window of Exposure (average number of days)

Transportation and Warehousing

Always 364 Days 270 Days 150 Days 30 Days

16.13%38.71% 6.45% 24.19% 14.52%

Retail Trade

Always 364 Days 270 Days 150 Days 30 Days

17.31%55.42% 7.55% 9.2% 8.25%

Information Technology

Always 364 Days 270 Days 150 Days 30 Days

22.1%56.88% 6.28% 8.56% 6.18%

Healthcare and Social Assistance

Always 364 Days 270 Days 150 Days 30 Days

17.37%43.05% 13.51% 12.16% 13.9%

Finance and Insurance

Always 364 Days 270 Days 150 Days 30 Days

22.05%47.09% 7.58% 11.17% 12.11%

Overall, several industries have reduced their Window of Exposure (WoE) by focusing on 
outcomes. In particular, Transportation & Warehousing showed the most improvement, perhaps 
due to some high profile data breaches in 2018.

Healthcare (43.05 days) and Retail (55.42 days) both improved year-over-year, consistently 
reducing their Window of Exposure for their applications from 2017 to 2018.

At 56.88, Information Technology has not reduced its WoE year-over-year. In fact, WoE has 
increased from 2017 to 2018. Despite the fact that IT teams are well-versed in good AppSec 
best practices, they do not seem to be putting them into practice.

Finance remained the same between 
2017 and 2018 (47.09 days).

KEY TAKEAWAY

KEY TAKEAWAY

KEY TAKEAWAY

KEY TAKEAWAY



© 2019 WhiteHat Security, Inc.

P
H

A
SE 1

11

Average Time-to-Fix by Risk & Remediation Rate by Risk

A combined analysis of Time-to-Fix and Remediation Risk is essential to gain a 
complete picture of the current state of your application security risk posture.

Average Time-to-Fix by Risk & Remediation Rate by Risk - DAST Data

USA

CRITICAL CRITICAL

HIGH HIGH

LOW LOW

MEDIUM MEDIUM

NOTE NOTE

148.6 DAYS 137.5 DAYS50.7% 40.7%

Average  
Time-to-Fix

Average  
Time-to-FixRemediation Rate Remediation RateRisk Risk

234.5 DAYS 108.6 DAYS36.8% 33.9%

260.7 DAYS 241.1 DAYS44.1% 57%

192.9 DAYS 127.5 DAYS32% 47.9%

255.5 DAYS 241 DAYS24.2% 19%

EUROPE

KEY TAKEAWAYS

♦♦ In general, remediation rates have fallen, which is a huge concern. We can attribute 
this to an increased awareness and focus on application security, which naturally 
expands the scope of applications to be tested. In fact, in a single year, we saw 
a 20% increase in the number of apps organizations are testing. Common sense 
tells us that when you are testing more apps, but not increasing your investment in 
fixing vulnerabilities, remediation rates will naturally rise.

♦♦ EU remediation rates are far worse than the rest of the world, which is quite 
a surprise considering that GDPR is now in full force. Our hypothesis is that 
organizations are still in the early phases of implementing GDPR compliance, and 
next year we expect to see marked improvement in our EU customers’ remediation 
rates.

♦♦ Traditional approaches for application development are failing; as one might 
guess, when you run a single DAST scan just to satisfy a checkmark on an auditor 
checklist, you may not move the needle on reducing AppSec risks. Instead, 
structured DevSecOps phase-wise implementation is essential. Specifically, feed 
DAST results into a bug tracking system to get prioritized and fixed, then run DAST 
again to verify those fixes take hold.



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.

P
H

A
SE

 1

12

In this section, we will present the outcomes experienced by organizations 
who have implemented at least two assessment techniques and have taken 
a phased-approach to DevSecOps. Specifically, this section highlights the 
metrics for Phase 1 of the three-phased DevSecOps approach.

When we examine the WoE rates for apps developed via a robust DevSecOps framework, we can see 
the benefits of these outcomes.

Window of Exposure (WoE)

Average Time-to-Fix by Risk and Remediation Rate by Risk (DAST data)

CRITICAL

HIGH

LOW

MEDIUM

NOTE

22.1 DAYS 89.36%

Average  
Time-to-Fix Remediation RateRisk

49.7 DAYS 87.25%

284 DAYS 67%

71.6 DAYS 91.36%

289.4 DAYS 8.35%

♦♦ Overall Window of Exposure is significantly lower than the industry average. We attribute 
this outcome to teams prioritizing the testing of in-production applications using DAST 
to discover vulnerabilities that are currently exploitable and then taking a risk-based 
approach to mitigating or remediating these vulnerabilities. The testing cycle comes full 
circle once the app is re-tested using DAST to verify fixes are implemented correctly.

♦♦ The apps that have a permanent WoE (“e.g. WoE always”) is still higher than woe_364 and 
woe_270, but significantly less than the overall WoE_Always (~50%) for apps developed 
by organizations not yet implementing DevSecOps.

♦♦ These Time-to-Fix metrics reflect a rational and 
well-implemented AppSec strategy. Just as one 
would expect, Time-to-Fix is lowest for critical 
vulnerabilities and highest for notes, since these 
vulnerabilities are considered optional rather than 
‘required to be fixed.’

♦♦ While organizations are doing relatively well with 
remediating critical, high, and medium ranked 
vulnerabilities, there is room for improvement to 
more quickly remediate vulnerabilities in the low 
risk category.

Typical DevSecOps Outcomes

Always 364 Days 270 Days 150 Days 30 Days

22.2%22.31% 11.24% 16.77% 27.48%

KEY TAKEAWAYS

KEY TAKEAWAYS



© 2019 WhiteHat Security, Inc.

P
H

A
SE 1

13

Additional Insights

Avg. Number of Vulns per SiteIndustry Avg. Number of Serious Vulns per Site

5.2 3.5

5.9 3.2

2.7 2.3

3.9 2.3

5 3.1

4.1 2.9

5 3

7 4.1

7.2 2.5

6.7 3.4

7 4.3

6.1 3.2

6.2 3.4

5.6 3.1

6.5 3.5

6.9 3.9

5.7 2.8

6.2 3.3

6.2 3.1

Vulnerabilities by Industry per Site

Accommodation & Food Services

Administrative & Support / Waste Management / Remediation Services

Agriculture, Forestry, Fishing & Hunting

Arts, Entertainment, & Recreation

Educational Services

Finance & Insurance

Healthcare & Social Assistance

Information Technology

Management of Companies & Enterprises

Manufacturing

Mining / Quarrying / Oil & Gas Extraction

Other Services (except Public Administration)

Professional, Scientific, & Technical Services

Public Administration

Real Estate / Rental / Leasing

Retail Trade

Transportation & Warehousing

Utilities

Wholesale Trade

♦♦ The overall average of 3.2 critical vulnerabilities per website across all industries has remained constant over the last three years. 

♦♦ IT is one of the worst offenders when it comes to the sheer volume of vulnerabilities. One possibility could be based on 
its lack of regulation as compared to well-regulated industries like finance or healthcare. Additionally, the IT industry has a 
curious relationship to risk. Rather than taking on the security risks associated with their own products, IT passes this risk on 
to their customers. As the source of all of these vulnerabilities that show up in other industries, IT is also in a unique position 
to be a hero. If this industry got its act together, there would be a positive cascading effect and outcome throughout the rest 
of the global economy. 

♦♦ The Arts & Entertainment industry is one of the best industries in terms of number of vulnerabilities. Our hypothesis is that 
these companies recognize the essential need to protect their highly monetizable content, which is only possible through the 
implementation of a strong DevSecOps framework. In other words, what’s continually measured can be continually secured.

♦♦ Honorable mentions go to the manufacturing industry, which found fewer vulnerabilities than last year. For these companies, 
securing their digital supply chains has become an existential priority. As more and more of their delivery infrastructure 
becomes connected, the software lifecycle is now as essential as the factory line.

♦♦ Despite their well-regulated status, the finance, healthcare, retail, and utilities industries had more vulnerabilities than they did 
last year. We find that while these regulated industries have application security programs, a majority of these programs are 
focused on check-the-box compliance needs.

KEY TAKEAWAYS



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.

P
H

A
SE

 1

14

Vulnerability Prevalence by Class (DAST)

Insufficient Transport Layer Protection

Information Leakage

Cross Site Scripting

Frameable Resource

Predictable Resource Location

Improper Input Handling

Fingerprinting

Content Spoofing

Insufficient Authorization

Brute Force

URL Redirector Abuse

Server Misconfiguration

Cross Site Request Forgery

Directory Indexing

HTTP Response Splitting

Insufficient Session Expiration

SQL Injection

Insufficient Password Policy Implementation

Autocomplete Attribute

Abuse of Functionality

Insufficient Anti-automation

Application Code Execution

Denial of Service

♦♦ Insufficient Transport Layer Protection 
(TLS) continues to be the most prevalent 
vulnerability type. In the past, without any 
TLS exploits available, this vulnerability 
was purely theoretical. Of course, that is 
no longer the case. Many TLS exploits 
are currently being written and released, 
and with more organizations moving 
their production apps to the cloud, 
we anticipate this trend will continue. 
Specifically, we expect that TLS testing 
will evolve in two ways: a) theoretical 
exploits will become manifest, and b) 
new tests will continually be written. 

♦♦ Cross-site request forgery (XSRF) has 
decreased significantly since last year. 
As more API-first and API-based apps 
are being developed, XSRF protections 
are automatically implemented at the 
framework-level. Additionally, browser-
level protections are often enabled 
by default preventing malicious intent 
requests like ”get” or “delete” requests 
without sufficient authorization.

33.09%

12.44%

9.69%

6.42%

5.63%

5.57%

5.38%

5.29%

4.83%

2.24%

1.41%

0.99%

0.95%

0.93%

0.77%

0.59%

0.51%

0.29%

0.27%

0.26%

0.25%

0.23%

0.22%

It is important, at this 
point, to briefly examine 
SAST vulnerabilities 
by prevalence to get a 
complete picture of DAST 
vulnerability prevalence.

KEY TAKEAWAYS



© 2019 WhiteHat Security, Inc.

P
H

A
SE 1

15

Vulnerability Prevalence by Class (SAST)

Unpatched Library

Application Misconfiguration: Global Error Handling Disabled

Cross Site Scripting

Disclosure: Cleartext Password

Application Misconfiguration: Debug

Insufficient Transport Layer Protection

Cryptography: Insecure Digest

Insufficient Session Expiration

Cryptography: Improper Pseudo-Random Number Generator Usage

Disclosure: Hardcode Password

Injection: Unknown Interpreter

Denial of Service: ReadLine

SQL Injection

Path Traversal

URL Redirector Abuse

Cryptography: Hardcoded Key

Injection: HTTP Response Splitting

Cryptography: Insecure Cipher Padding

Information Leakage: Password

Cryptography: Improper Certificate Validation

Insufficient Logging & Monitoring

♦♦ Information Leakage vulnerabilities point to application misconfiguration issues that can be easily resolved by doing more SAST 
testing to prevent these from showing up in DAST results and endangering production apps.

♦♦ In both DAST and SAST data sets, Cross Site Scripting (XSS) is the third most common vulnerability type. In theory, if 
organizations are discovering XSS vulnerabilities in SAST (pre-production) and remediating them at this stage, we would not 
expect to see these vulnerabilities in DAST results.

♦♦ Only one third of Insufficient Transport Layer Protection vulnerabilities are seen in SAST results (8%) compared to how prevalent 
these are in DAST results (33%). This suggests that TLS errors may likely be introduced outside of the application, and perhaps 
inherited as part of the network infrastructure and operations. We recommend that DevOps and security teams work closely 
with operations teams to get to the root cause of this common vulnerability and fix it. This is yet another reason why it is 
essential to conduct SAST and DAST testing in concert to capture a comprehensive view of application security health.

♦♦ Injection vulnerabilities are on the rise. In isolation, these vulnerabilities would never be reportable. However, in a highly 
containerized architecture, these vulnerabilities have much more potential to do harm. With APIs and microservices playing 
critical roles in this new architecture, injection vulnerabilities will continue to rise in importance, prevalence, and impact. And, of 
course, this trend provides even more reason to use both SAST and DAST in your risk discovery process.

33.05%

13.67%

12.38%

10.68%

8.66%

8.45%

6.86%

6.6%

6.43%

6.07%

6.03%

5.6%

5.31%

5.22%

5.2%

4.41%

4.34%

4.27%

3.3%

3.18%

2.78%

KEY TAKEAWAYS



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.16

Mobile Application Security Testing

Consumers rely on dozens of mobile apps 
to shop, bank, travel, and play. But what 
most don't know is that an abundance of 
Android apps have privacy shortcomings 
that put their personal data at risk. 
Cybercrime rates are soaring, and more 
than 60 million Americans⁵ have fallen 
victim to fraud or identity theft stemming 
from a breach of their personal information.

A review of 250 popular Android mobile 
apps from leading brands reveals that 
70% leak sensitive personal data. These 
online retail, brick-and-mortar retail, 
finance, insurance and travel apps have 
privacy risks that expose personally 
identifiable information (PII). Consumers 
should carefully consider halting use of 
apps that don't safeguard their privacy 
while lobbying app makers to fix them. 
Likewise, organizations should respect 
consumer privacy demands by ensuring 
their developers follow best practices for 
building secure mobile apps and close any 
privacy gaps that are found.

Conducted in February to April 2019, the 
evaluation focused on popular publicly 
available Android mobile apps downloaded 
from the Google Play™ store using the 
NowSecure automated mobile AppSec 
security testing platform. The analysis 
zeroed in on leakage of unencrypted 
personal information stored on the mobile 
device and transmitted over the network, 
as well as potential exposure to phishing 
attacks.

In partnership with

⁵ source: https://www.lifelock.com/learn-identity-theft-resources-how-common-is-identity-theft.html

More than

60 Million 
Americans have 
fallen victim to fraud 
or identity theft.

The risk of privacy compromise is greatest in mobile apps 
from online digital marketplaces and leading brick-and-
mortar retailers. Travel apps which are among the most 
heavily used apps in Google Play™ fell somewhere in the 
middle. And as expected due to the level of regulation 
imposed on the finance and insurance industries, those 
mobile apps fared the best in the analysis.

Out of 250 Android apps, 
nearly 3 in 4 leak 
sensitive personal data

82% of tested retail 
apps leaked sensitive data

67% of tested travel 
apps leaked sensitive data

50% of tested finance 
and insurance apps leaked 
sensitive data

https://www.lifelock.com/learn-identity-theft-resources-how-common-is-identity-theft.html


© 2019 WhiteHat Security, Inc. 17

Can Bad PR Lead to Good 
AppSec Outcomes? 
Perhaps the Transportation and Warehousing Industry has had better application 
outcomes thanks to the tough lessons learned from ugly headlines. Lest we forget 
these tough, yet valuable, lessons, here are a few of the big ones.

DUBAI, JANUARY 2018

Transportation Network Company
What happened? 14 million records were stolen. Data included personal 
information such as names, email addresses, phone numbers, and trip data.

How did it happen? According to the company, “access was gained to a 
computer system that stored customer and driver account information.⁶"

UNITED KINGDOM, AUGUST 2018

International Airline
What happened? In August and September 2018, more than 380,000 card 
payment transactions were ‘compromised’, leaking financial and personal 
data of the company’s customers.

How did it happen? Cyberattackers took advantage of vulnerabilities in the 
web application to compromise the booking process.⁸

USA, JANUARY 2017

Travel Fare Aggregator Website
What happened? Over a two-year period starting in January 2017, attackers 
stole 880,000 credit card holder records that, in addition to payment card 
information, also included personal data such as billing addresses, phone 
numbers and emails.

How did it happen? Cyberattackers accessed travel bookings via exploiting 
the company’s website application⁷.

HONG KONG, MARCH 2018

International Airline
What happened? The company discovered an enormous data breach. 9.4 
million records were stolen. This huge volume of personal data included 
860,000 passport numbers, 245,000 Hong Kong identity card numbers, 403 
expired credit card numbers, and 27 credit card numbers without the card 
verification value (CVV).

How did it happen? Not many details have been publicly released, other than 
that passenger data was accessed ‘without authorization.⁹'

⁶ Reuters ⁷ Reuters ⁹ Reuters⁸ Business Insider

https://www.reuters.com/article/us-careem-cyberattack/dubais-careem-hit-by-cyber-attack-affecting-14-million-users-idUSKBN1HU1WJ
https://www.businessinsider.com/r-expedias-orbitz-says-880000-payment-cards-hit-by-security-breach-2018-3
https://www.reuters.com/article/us-careem-cyberattack/dubais-careem-hit-by-cyber-attack-affecting-14-million-users-idUSKBN1HU1WJ
https://www.businessinsider.com/british-airways-customer-data-stolen-2018-9


© 2019 WhiteHat Security, Inc.18

Release Assurance

Organizations conduct the necessary risk assessment due diligence to verify software quality prior to every release 
(whether classified as minor or major releases). Integrate SAST, SCA and DAST into your software lifecycle and leverage 
the following application security metrics to baseline your organizations “Release Assurance” strategy.

The organization aims to ensure that a new release candidate does not add additional risk compared to the application’s 
current release. Additionally, the organization aims to ensure that remediation activities have been successful in reducing 
the application’s risk profile. The release assurance concern is an ideal place to integrate portions of the assessment 
methodology into the release pipeline and is most successful when combined with a pre-existing and robust risk discovery 
program.

PHASE 2

GOALS

ACTIONS

METRICS

Average Time-to-Fix (SAST) 
The “Average Time-to-Fix” metric provides an industry baseline for how long it takes to fix a 
vulnerability in general. Develop an SLA for “Average Time-to-Fix” for your organization and 
aggressively try to reduce it for all vulnerabilities.

Remediation Rate by Risk (SAST) 
The “Remediation Rate by Risk” metric represents the percentage of vulnerabilities that are fixed, 
organized by level of risk. Develop SLAs along with procedures and training to support the SLAs that 
promote remediation efforts by taking a risk-based approach. Track the “DAST and SAST Remediation 
by Risk” metrics to ensure the most serious vulnerabilities are being prioritized for remediation.

Vulnerability Prevalence by Class (SAST) 
Organizations are increasingly adopting open source and commercial off-the-shelf components 
to rapidly innovate. As such, the likelihood of inheriting vulnerabilities is higher than ever before. 
Baseline your development teams’ security goals by creating an SLA around reducing the most likely 
vulnerabilities by class.



© 2019 WhiteHat Security, Inc.

P
H

A
SE 2

19

Analysis & Insight

Average Time-to-Fix and Remediation Rate by Risk

In this section, we will discuss the key findings as they relate to Phase 2 
measures, namely Average Time-to-Fix and Vulnerability Prevalence by Class.

SAST

CRITICAL CRITICAL

HIGH HIGH

LOW LOW

MEDIUM MEDIUM

NOTE NOTE

51.7 DAYS 148.6 DAYS55.2% 50.7%

Average  
Time-to-Fix

Average  
Time-to-FixRemediation Rate Remediation RateRisk Risk

102.3 DAYS 234.5 DAYS36.2% 36.8%

97.8 DAYS 260.7 DAYS41.9% 44.1%

117.9 DAYS 192.9 DAYS28.1% 32%

126.7 DAYS 255.5 DAYS19.7% 24.2%

DAST

♦♦ While we’re seeing similar outcomes in terms of vulnerability prevalence between 
SAST and DAST testing, we’re seeing much lower time-to-fix metrics in SAST 
results. 

♦♦ Clearly, a focus on Critical vulnerabilities is driving better outcomes earlier in the 
SLC from a remediation rate perspective. Organizations take 1/3 of the time to fix 
a Critical vulnerability when it’s discovered during SAST testing (early in the SLC) 
compared to discovering it via DAST. Yet, more attention on high risk vulnerabilities 
is needed.

♦♦ When you incorporate SAST into your AppSec program, you can expect much 
better outcomes as your fix rate increases and time-to-fix (TTF) shrinks for the same 
vulnerability types in production apps.

♦♦ A focus on high-risk vulnerabilities is still sorely lacking. This suggests that the 
volume of vulnerabilities and applications organizations are managing has steadily 
increased while investment in remediation and security teams has stagnated.

KEY TAKEAWAYS



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.

P
H

A
SE

 2

20

Vulnerability Prevalence by Class (SAST)

Unpatched Library

Application Misconfiguration: Global Error Handling Disabled

Cross Site Scripting

Disclosure: Cleartext Password

Application Misconfiguration: Debug

Insufficient Transport Layer Protection

Cryptography: Insecure Digest

Insufficient Session Expiration

Cryptography: Improper Pseudo-Random Number Generator Usage

Disclosure: Hardcode Password

Injection: Unknown Interpreter

Denial of Service: ReadLine

SQL Injection

Path Traversal

URL Redirector Abuse

Cryptography: Hardcoded Key

Injection: HTTP Response Splitting

Cryptography: Insecure Cipher Padding

Information Leakage: Password

Cryptography: Improper Certificate Validation

Insufficient Logging & Monitoring

♦♦ Unpatched libraries continue to be the most prevalent vulnerability discovered by SAST testing. Clearly, more Software 
Composition Analysis (SCA) is needed to identify these inherited vulnerabilities before apps are moved into production. The 
prevalence has increased considerably from last year (over 50% increase). It points to a dangerous trend that more open source 
and third-party software is being embedded. This creates a situation where more than 1/3 of all risks are inherited.

♦♦ 10 out of the top 20 CVEs detected by SCA and over 50% of SCA vulnerabilities are directly or indirectly related to API-based applications. 
This trend points to the importance of running SCA scans with modern microservices architecture based API-first applications.

♦♦ Despite increased awareness of the dangers of Cross Site Scripting (XSS), it remains at the top. Over the past three years, XSS 
vulnerabilities have remained in the number two position. Despite widespread knowledge of this vulnerability and its broad and 
crippling impacts, the industry continues to fail to address XSS issues.

♦♦ Application Misconfiguration Errors are on the rise. While development frameworks are taking hold, organizations are failing to 
change default configurations which leaves apps and their data exposed to risk (e.g. leaving exposed default administration 
endpoints, enabled debugging, or failing to enable TLS controls). Some of the world’s largest data breaches were due to 
mistakenly relying on default configurations that are unnecessarily insecure and easy to exploit. According to security firm Skyhigh 
Networks, 7% of all S3 buckets have unrestricted public access, and 35% are unencrypted, leaving data unnecessarily exposed 
to the threat of being stolen or misused¹⁰. Since the default configuration for MongoDBs is to allow external connections to the 
internet, ransomware attackers have targeted these data stores to steal and replace data in return for the victim paying a ransom.

33.05%

13.67%

12.38%

10.68%

8.66%

8.45%

6.86%

6.6%

6.43%

6.07%

6.03%

5.6%

5.31%

5.22%

5.2%

4.41%

4.34%

4.27%

3.3%

3.18%

2.78%

¹⁰ https://www.bleepingcomputer.com/news/security/7-percent-of-all-amazon-s3-servers-are-exposed-explaining-recent-surge-of-data-leaks/

KEY TAKEAWAYS

https://www.bleepingcomputer.com/news/security/7-percent-of-all-amazon-s3-servers-are-exposed-explai


© 2019 WhiteHat Security, Inc.

P
H

A
SE 2

21

In this section, we will present the outcomes experienced by 
organizations who have implemented at least two assessment 
techniques and take a phased-approach to DevSecOps (typically 
DAST & SAST). Specifically, this section highlights the metrics for 
Phase 2 of the three-phased DevSecOps approach.

When we examine the TTF rates for apps developed via a robust DevSecOps framework, we can clearly 
see the benefits of these outcomes (outlined below).

Average Time-to-Fix (TTF) by Risk and Remediation Rate by Risk

CRITICAL

HIGH

LOW

MEDIUM

NOTE

51.9 DAYS 66.17%

Average  
Time-to-Fix Remediation RateRisk

72.8 DAYS 53.47%

58.7 DAYS 49.07%

64.6 DAYS 32.55%

169.9 DAYS 17.77%

Typical DevSecOps Outcomes

♦♦ Organizations that implemented a three-phased DevSecOps framework achieved 
a lower average TTF as well as better remediation rates across all risk categories. 
This is a measurable improvement from the global average and eventually 
contributes to better AppSec posture in production.

♦♦ These organizations have found traction by integrating SAST, SCA and DAST 
results into their bug tracking and software lifecycle management tools. These 
results continue to demonstrate the adage “that which is measured is managed,” 
and we, of course, would add “secured”. In simple terms, security defects are 
treated and addressed in the same way as software defects (e.g. security is a 
subset of core functionality rather than as an adjunct). These teams discuss security 
defects in stand-ups and while planning software releases, as well as how to 
remediate them, just as they would any other aspect of functionality.

KEY TAKEAWAYS



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.22

The AppSec Funding Model: 
Woefully Out of Date 
The funding model for application security is flawed and 
incomplete. While security teams are taking on more 
accountability, responsibility, and producing more results, they 
don’t have the adequate resourcing from engineering and 
operations to fix AppSec vulnerabilities¹¹.

We find that a lack of organizational security awareness prevents 
organizations from taking a holistic approach to planning for 
AppSec. Ensuring that every organization has access to the right 
level of training and enablement is the first step to creating a well-
rounded AppSec strategy.

There is a dearth of AppSec subject matter expertise in AppSec, 
and that prevents a well-thought out plan from succeeding. 
Enable your AppSec SMEs to focus on driving change by 
adopting a platform solution that provides the capabilities, the 
accuracy, the speed and the guidance required to scale your 
SMEs to the entire organization's DevSecOps needs.

Finally a culture of collaboration between Development, Security 
and Operations that is based on mutual Objectives and Key 
Results (OKRs) will help balance resources between AppSec 
testing and AppSec remediation, and establish company-wide 
consensus on the operational game plan – from scoping to 
testing to fixing. As part of the AppSec scoping effort, this will 
help identify remediation costs (and anticipate obstacles), and add 
these to the funding request.

¹¹ According to a 2018 DevSecOps Community Survey, nearly one-half of developers say they don’t have enough time to spend 
on security, even though they are aware of its importance. Source: https://www.whitehatsec.com/blog/partnership-with-rsi-
eases-burden-of-remediation-on-devsecops/

https://www.whitehatsec.com/blog/partnership-with-rsi-eases-burden-of-remediation-on-devsecops/
https://www.whitehatsec.com/blog/partnership-with-rsi-eases-burden-of-remediation-on-devsecops/


© 2019 WhiteHat Security, Inc. 23

Developer Enablement

Initiate programs to educate and empower developers throughout the SLC, including adding AppSec tools to the 
developer workspace and training developers on their use. Like most strategically successful initiatives, developer 
enablement is best done as a data-driven and customer-driven enterprise. All activities are informed by application 
assessment data, and all remediation decisions and activities are viewed in the context of the customer perspective: the 
protection of their data, and the quality of their experience. Specifically, the data gathered from the first two phases (Risk 
Discovery and Release Assurance) will guide the focus areas for Developer Enablement.

The organization aims to reduce the number of vulnerabilities developers introduce into the release pipeline by bringing 
assessment and education into the developer workspace. Lightweight application security tools can be run in the 
developer’s own sandbox to eliminate security issues before they are committed to version control or the release pipeline. 
Education is conducted based on the common findings of the risk discovery and release assurance, secure enterprise 
libraries are developed to replace commonly used components that are prone to misuse, and a question and answer 
feedback loop is established via integrated security knowledge bases or direct interaction with application security 
experts.

Focus on staff training based on the following application security metrics to drive your own organization’s Developer 
Enablement strategy.

PHASE 3

GOALS

ACTIONS

METRICS

Vulnerability Prevalence by Class (DAST and SAST) 
Use the "Vulnerability Prevalence by Class” (for both DAST and SAST) from this report to set up focused 
and recurring training for your development, operations and security teams. Track your teams’ progress 
by tracking Vulnerability Prevalence by Class for the applications they develop and evolve your training 
efforts to meet the evolving needs of your teams.

DAST and SAST Remediation by Risk 
Use the “DAST and SAST Remediation by Risk” metric to baseline your teams’ goals. Develop SLAs 
and procedures/training to support the SLAs that promote remediation efforts by taking a risk-based 
approach. Track the “DAST and SAST Remediation by Risk” metrics to see that the most serious 
vulnerabilities are being prioritized for remediation.



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.

P
H

A
SE

 3

24

Analysis & Insight

Typical DevSecOps Outcomes

♦♦ While Insufficient Transport Layer Protection related vulnerabilities found 
during DAST scanning are not entirely related to developer errors it is an 
issue that merits education within Development and DevOps teams. As more 
product teams become full-stack teams, having knowledge and training around 
this topic will go a long way in timely mitigation and remediation of these 
vulnerabilities. 

♦♦ By analyzing DAST & SAST Vulnerability Prevalence by Class, it is clear that 
developers need training on how to avoid Information Leakage and Cross Site 
Scripting errors. As basic as these vulnerability types seem, they still constitute 
over 20% of the vulnerabilities we find. 

♦♦ The Remediation Rate by Risk data for DAST and SAST suggests that 
development teams need additional information to prioritize a larger volume 
of critical vulnerabilities during sprint cycles. Currently less than 60% of critical 
vulnerabilities are being remediated.

In this section, we will present the outcomes experienced by organizations who have 
implemented at least two assessment techniques and take a phased-approach to 
DevSecOps and have integrated AppSec training within their software development teams.

By tracking Vulnerability Prevalence by Class, security managers and development 
managers in these organizations are able to devise better strategies to remediate frequently 
occurring security flaws. For example, many SQLi errors can be fixed at an architectural level 
by using variable binding abstracted using a simplified facade such as using one or both of 
the Data Access Object or Object Relational Mapping patterns.

This report analyzes the time spent by course per individual to draw insights around the 
current focus areas for security enablement. Organizations that prioritize integrating security 
training and enablement find that development teams do actually spend considerable time 
learning about security when secure development becomes a requirement.

KEY TAKEAWAYS



© 2019 WhiteHat Security, Inc.

P
H

A
SE 3

25

Average time to fix a critical 
vulnerability found in production 
for an organization that combines 
developer enablement in their 
AppSec Program

This report finds that there is strong correlation between the time individual developers spend in training and long-term 
DevSecOps outcomes. Organizations that consistently demonstrate higher remediation rates and lower time-to-fix for 
higher risk vulnerabilities typically incorporate topical, timely and repeated developer enablement.

For organizations that combine developer enablement in their overall AppSec program, the 
average time-to-fix a critical vulnerability found in production is approximately 28 days when 
compared to approximately 148 days for organizations that either do not combine developer 
enablement within their AppSec program or do not offer developer enablement at all.

Similarly, remediation rates of critical vulnerabilities found in production also sharply increases 
to almost 90% compared to approximately 50%.

Both of these trends, in part, are attributable to increased awareness about the impact of 
these vulnerabilities in a production system as well as an improved knowledge of fixing 
security vulnerabilities in code.

For organizations that combine developer enablement in their overall AppSec program, the 
average time-to-fix a critical vulnerability found during a development sprint is approximately 
the same when compared to the average time-to-fix organizations that either do not 
combine developer enablement within their AppSec program or do not offer developer 
enablement at all.

However, there is a sharp increase in SAST remediation rates for organizations that combine 
developer enablement into their overall AppSec program. This, in part, is attributable to 
increased awareness about identifying and fixing security vulnerabilities in code.

WhiteHat Security: OWASP Top Ten for Developers

WhiteHat Security: Building Secure JavaEE Applications

WhiteHat Security: OWASP Top Ten for Managers

WhiteHat Security: General Security Awareness

WhiteHat Security: Building Secure JavaScript Applications

WhiteHat Security: Building Secure Mobile Applications

WhiteHat Security: Foundational Exam

WhiteHat Security: Integrating Security Throughout the SDLC

WhiteHat Security: Defensive Enterprise Remediation Series

WhiteHat Security: Threat Modeling

WhiteHat Security: Building Secure ASP.NET Applications

WhiteHat Security: OWASP Mobile Top Ten for Developers

600 minutes

257 minutes

109 minutes

103 minutes

92 minutes

76 minutes

62 minutes

56 minutes

49 minutes

42 minutes

24 minutes

14 minutes

Time Spent on Secure Development Courses per Individual

DAST (Time-to-Fix and Remediation Rates)

SAST (Time to Fix and Remediation Rates)

148 DAYS

Average time to fix a critical 
vulnerability found in production for 
an organization that does not combine 
developer enablement with their 
AppSec Program or does not offer 
developer enablement at all

28 DAYS



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.26

The DevSecOps framework is designed to deliver positive 
business outcomes to those organizations that embrace it. 
Specifically, by implementing these three phases into their 
SLC, organizations that succeed with DevSecOps have 
achieved the following:

Lessons Learned

Lower overall business risk from applications in production 

♦♦ Reduced their Window of Exposure for apps that are always vulnerable to an 
average of 22%¹² compared to an average of 50% in traditional organizations.

♦♦ Prioritized the testing of in-production applications using DAST to find vulnerabilities 
that are currently exploitable and then mitigating these vulnerabilities first.

Better security enablement of Dev, Sec and Ops teams 

♦♦ By tracking Vulnerability Prevalence by Class and Remediation Rates by Risk, 
security managers and development managers in these organizations are able to 
devise better enablement strategies to remediate frequently occurring security flaws 
(e.g. Cross Site Scripting errors).

Integrated hence impactful DevSecOps 

♦♦ Achieved a lower average Time-to-Fix across all risk categories. These teams have 
found great traction by integrating DAST results into their bug tracking and software 
lifecycle management tools.

♦♦ Aligned their DevSecOps goals with their SLC, so that each is measured in tandem 
rather than in silos. In simple terms, security defects are treated and addressed in the 
same way as software defects (e.g. security is a subset of core functionality rather 
than as an adjunct).

¹² Considering that this population of apps represents more than 35 million lines of code, reducing the WoE by this 
amount has significant downstream benefits for reducing the overall risk surface area for the enterprise.



© 2019 WhiteHat Security, Inc. 27

Recommendations
♦♦ Implement a three-phased DevSecOps approach. In addition to increasing 

remediation rates and shrinking vulnerability windows, it can also facilitate 
communication, collaboration and consensus among IT security, DevOps, and IT 
Operations.

1.	 As this report illustrates, the biggest challenge facing organizations is dealing 
with an increasingly huge volume of AppSec findings and remediation tasks. By 
discovering, categorizing, and prioritizing the biggest risks first, through DAST risk 
discovery, teams have a strategic, targeted plan to address the most vulnerable 
apps in production.

2.	 Following up with SAST and SCA testing and remediation as well as a second 
DAST cycle helps close the loop. 

3.	 Prioritize developer enablement to get maximum remediation benefits for 
vulnerabilities discovered by DAST, SAST, and SCA.

♦♦ Use DAST and SAST testing results for risk assurance, developer enablement 
and to drive consensus for an updated application security funding model. 
Bringing distinct departments together for a common purpose supports the kind 
of consensus-building necessary to update the budget process for application 
security investments. Until and unless remediation costs are included in the risk 
assessment budget calculus, remediation rates will continue to fall. The bottom line 
is: finding defects earlier in the SLC when it’s cheaper to fix them helps everyone.

♦♦ Incorporate SCA into your DevSecOps program. Since more than one third of 
all AppSec risks lie within ‘reused’ code (aka unpatched libraries), it’s essential to 
conduct SCA testing as part of the risk assurance process. It’s the only way to find 
and fix inherited flaws (developer enablement and SAST don’t make much sense 
when it’s ‘not my code’). Additionally, with the rise of microservices apps, APIs, 
and the popularity of code sharing platforms like GitHub, we expect this trend to 
continue… which makes SCA a fundamental part of any AppSec program.

♦♦ Ensure balanced investment across Development, Security and Operations 
for Application Security. End-to-end AppSec requires adequate funding for all 
functions involved in the production of applications from development to security 
to operations. Use some or all of the the metrics outlined in the report to create 
goals and SLAs for development, security and operations teams. With those pan-
organizational goals for application security, develop an investment plan that 
allows security to test applications and DevOps/TechOps to get trained, mitigate/
remediate vulnerabilities and incorporate security testing throughout the Software 
Lifecycle.



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.28

Innovation in 
Application Security
With Artificial Intelligence & Machine Learning becoming industrially 
viable, there is hope that accuracy, speed and guidance no longer 
need to be mutually exclusive.

At WhiteHat, we leverage over 150 TB of security data that corresponds to over 100 million attack vectors 
to drive a very important facet of application security – accuracy of results through vulnerability verification. 
In doing so, WhiteHat Security engineers and researchers are now actively developing, training and testing 
machine learning models that enable increasingly automated vulnerability verification. This automated 
vulnerability verification allows engineers and researchers the time to develop additional security tests and 
spend an increasing amount of time in security research that benefits our customers.

The machine learning subsystem is tightly integrated into the WhiteHat Application Security Platform as well 
as the Threat Research & Operations Center’s service delivery process. This allows the Threat Research & 
Operations Center to govern and evolve the system without disrupting the customer experience. In addition, 
a subset of vulnerabilities always go through human verification for the following reasons:

1.	 To ensure that vulnerabilities that can’t be automatically verified by the machine learning 
subsystem are verified by humans 

2.	 To add new human curated vulnerabilities to the 150+ TB attack vector data lake for future 
machine learning endeavors

3.	 For performing quality control on a sample of the automatically verified vulnerabilities and 
provide a feedback loop to fine-tune machine learning models as needed

At a high level, here is how the machine learning subsystem works in production:

By analyzing massive amounts of application security data, and by keeping human curation at its core, WhiteHat 
has created an approach to AppSec that brings together accuracy, speed and guidance for our customers.

Feeds Vulnerability data 
lake that drives ML voting

Potential 
Vulnerability

Verified 
Results

Machine Auto 
Voting

Human Voting 
Procedure

ML Model
Exists

ML Subsystem 
•	 Near-Zero false-positives

•	 Seamless to customers

•	 Integrated within existing 
service delivery process



© 2019 WhiteHat Security, Inc. 29

Appendix - Glossary of Terms
Web Application Vulnerability Classes

ABUSE OF FUNCTIONALITY
Abuse of Functionality is an attack technique that uses a website’s own 
features and functionality to attack. It misuses an application’s intended 
functionality to perform an undesirable outcome. These attacks can 
consume resources, circumvent access controls, or leak information. The 
potential and level of abuse will vary from site to site and application to 
application. This category of attacks is broad and includes situations where 
an application’s features can be functioning properly but still be exploited.

APPLICATION MISCONFIGURATION
Application Misconfiguration exploits configuration weaknesses found in 
applications. Many applications come with unsafe features enabled by 
default, such as debug and QA features. These features may provide a 
means for a hacker to bypass authentication methods and gain access to 
sensitive information, perhaps with elevated privileges.

BRUTE FORCE ATTACK
Brute Force Attacks are used to determine an unknown value such as a 
password by using an automated process to try many possible values. The 
attack takes advantage of the fact that the entropy of the values is smaller 
than perceived. For example: while an 8-character alphanumeric password 
can have 2.8 trillion possible values, many people will select passwords from 
a much smaller subset consisting of common words and terms.

BUFFER OVERFLOW
Buffer Overflow is a flaw that occurs when more data is written to a block 
of memory, or buffer, than the buffer is allocated to hold. Exploiting Buffer 
Overflow allows an attacker to modify portions of the target process address 
space.

CONTENT SPOOFING
Content Spoofing is an attack technique that allows an attacker to inject a 
malicious payload that is later misrepresented as legitimate content of an 
application. This attack compromises the trust relationship between the user 
and the application.

CREDENTIAL / SESSION PREDICTION
Credential or Session Prediction is a method of hijacking or impersonating 
an authorized application user by deducing or guessing the unique value 
that identifies a particular session or user, which can allow attackers to issue 
site requests with the compromised user’s privileges.

CROSS SITE REQUEST FORGERY 
Cross-Site Request Forgery is an attack that involves tricking a victim 
into sending an HTTP request to a target destination without the victim’s 
awareness, so that the attacker can perform an action as the victim. CSRF 
exploits the trust that an application has for a user.

CROSS-SITE SCRIPTING
In Cross-Site Scripting attacks, a malicious site includes a particular URL – 
one that will cause the target site to include a script chosen by the malicious 
site – in a target site’s page, and makes the user agent request it. Since the 
page is loaded with the user agent’s credentials, the script is able to perform 
actions at the target site in the user's name.

CRYPTOGRAPHY: INSECURE DIGEST 
Insecure Digest refers to an application that utilizes an insecure 
cryptographic hashing algorithm. The potential consequences of using 
an insecure cryptographic are similar to using an insecure cryptographic 
algorithm: data theft or modification, account or system compromise, and 
loss of accountability – i.e., non-repudiation.

DENIAL OF SERVICE
Denial of Service and Distributed Denial of Service (D/DoS) attacks attempt 
to prevent an application from serving normal user activity.  DDoS attacks, 
which are normally applied to the network layer, are also possible at the 
application layer.  These malicious attacks can succeed by starving a system 
of critical resources.

DIRECTORY INDEXING
Directory Indexing exploits insecure indexing, threatening a site’s data 
confidentiality. Site contents are indexed via a process that accesses files 
that are not supposed to be publicly accessible. Information is collected and 
stored by the indexing process and can later be retrieved by a determined 
attacker, typically, through a series of search engine queries. Directory 
Indexing has the potential to leak information about the existence of such 
files and their content.

DIRECTORY TRAVERSAL 
The Directory Traversal attack technique (aka Path Traversal) allows an 
attacker access to files, directories, and commands that potentially reside 
outside the root directory. An attacker may manipulate a URL in such a 
way that the application will execute or reveal the contents of arbitrary files  
anywhere on the server. Any device that exposes an HTTP-based interface 
is potentially vulnerable to Directory Traversal.

FINGERPRINTING / FOOTPRINTING
Fingerprinting or Footprinting is often an attacker’s first goal. They will 
accumulate as much information as possible including the target’s platform, 
application software technology, backend database version, configuration, 
and possibly even their network architecture/topology. Based on this 
information, the attacker can develop an accurate attack scenario to exploit 
any vulnerability in the software type/version being utilized by the target.

FORMAT STRING ATTACK 
Format String Attacks alter the flow of an application by using string 
formatting library features to access other memory space. Vulnerabilities 
occur when user-supplied data is used directly as formatting string input for 
certain C/C++ functions (e.g. fprintf, printf, sprintf, setproctitle, syslog).

HTTP REQUEST SMUGGLING 
HTTP Request Smuggling abuses the discrepancy in parsing non-RFC 
compliant HTTP requests between two HTTP devices – typically a front-
end proxy or HTTP-enabled firewall and a back-end server – to smuggle 
a request to the second device through the first device. This technique 
enables an attacker to send one set of requests to the second device 
while the first device interacts on a different set of requests. This facilitates 
several possible exploits, such as partial cache poisoning, bypassing firewall 
protection and XSS.

HTTP REQUEST SPLITTING 
HTTP Request Splitting forces the browser to send arbitrary HTTP requests. 
Once the victim’s browser is forced to load the attacker’s malicious HTML 
page, the attacker manipulates one of the browser’s functions to send two 
HTTP requests instead of one.

HTTP RESPONSE SMUGGLING 
HTTP Response Smuggling uses an intermediary HTTP device that expects 
or allows a single response from the server to send two HTTP responses 
from a server to a client that expects or allows a single response from the 
server. 



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.30

HTTP RESPONSE SPLITTING 
HTTP Response Splitting allows an attacker to manipulate the response 
received by a web browser. The attacker can send a single HTTP request 
that forces the web server to form an output stream which is then interpreted 
by the target as two HTTP responses instead of one, as is the normal case.

IMPROPER FILESYSTEM PERMISSIONS
Improper Filesystem Permissions are a threat to the confidentiality, integrity 
and availability of an application. The problem arises when incorrect 
filesystem permissions are set on files, folders, and symbolic links. When 
improper permissions are set, an attacker may be able to access restricted 
files or directories and modify or delete their contents.

IMPROPER INPUT HANDLING
Generally, the term input handling is used to describe functions like 
validation, sanitization, filtering, or encoding and/or decoding of input data. 
Improper Input Handling is a leading cause behind critical vulnerabilities that 
exist in systems and applications.

IMPROPER OUTPUT HANDLING
Improper Output Handling is a weakness in data generation that allows the 
attacker to modify the data sent to the client.

IMPROPER PSEUDO-RANDOM NUMBER GENERATOR
Insufficient randomness results when software generates predictable values 
when unpredictability is required.  When a security mechanism relies on 
random, unpredictable values to restrict access to a sensitive resource, 
such as an initialization vector (IV), a seed for generating a cryptographic 
key, or a session ID, then use of insufficiently random numbers may allow 
an attacker to access the resource by guessing the value. The potential 
consequences of using insufficiently random numbers are data theft or 
modification, account or system compromise, and loss of accountability (i.e., 
non-repudiation).

INFORMATION LEAKAGE
Information Leakage allows an application to reveal sensitive data, such 
as technical details of the application, environment, or user-specific data. 
Sensitive data may be used by an attacker to exploit the target application, 
its hosting network, or its users.

INSECURE INDEXING
Information is collected and stored by the indexing process. Insecure 
Indexing allows this information to be retrieved by a determined attacker, 
typically through a series of queries to the search engine. The attacker does 
not thwart the security model of the search engine; therefore, this attack 
is subtle and very hard to detect. It’s not easy to distinguish the attacker’s 
queries from a legitimate user’s queries.

INSUFFICIENT ANTI-AUTOMATION
Insufficient Anti-Automation occurs when an application permits an attacker 
to automate a process that was originally designed to be performed only in a 
manual fashion, e.g. registration for a site.

INSUFFICIENT AUTHENTICATION
Insufficient Authentication occurs when an application permits an attacker 
to access sensitive content or functionality without having to properly 
authenticate. For example, accessing admin controls by going to the /admin 
directory without having to log in.

INSUFFICIENT AUTHORIZATION
Insufficient Authorization occurs when an application fails to prevent 
unauthorized disclosure of data or a user is allowed to perform functions in a 
manner inconsistent with the permission policy.

INSUFFICIENT COOKIE ACCESS CONTROL
Insufficient Cookie Access Control occurs when cookie attributes such as 
“domain,” “path” and “secure” are not correctly utilized to limit access to 
cookies containing sensitive information. These attributes can be used by 
the user-agent when determining cookie access rights.

INSUFFICIENT CROSS-DOMAIN CONFIGURATION
The crossdomain.xml file is used to determine from which resources a 
Flash application is allowed to access data. Insufficient Cross-domain 
Configuration reflects a poorly configured Flash application that can be 
compromised to allow an attacker access to all the resources allowed in the 
cross-domain file. This error often occurs because a cross-domain file makes 
use of wild-card notation.

INSUFFICIENT PASSWORD AGING
Insufficient Password Aging allows a user to maintain the same password for 
an extended length of time, increasing the risk of password-based attacks.

INSUFFICIENT PASSWORD RECOVERY
Insufficient Password Recovery occurs when an application permits an 
attacker to obtain, change or recover another user’s password without 
permission. This happens when the information required to validate a user’s 
identity for recovery is either easily guessed or circumvented. Password 
recovery systems may be compromised through the use of brute force 
attacks, inherent system weaknesses, or easily guessed secret questions.

INSUFFICIENT PASSWORD STRENGTH
Insufficient Password Strength exists when a password policy does not 
aid the user in selecting a password that is less vulnerable to brute force 
attacks.

INSUFFICIENT PROCESS VALIDATION
Insufficient Process Validation occurs when an application fails to prevent 
an attacker from circumventing the intended flow or business logic of the 
application.

INSUFFICIENT SESSION EXPIRATION 
Insufficient Session Expiration occurs when an application permits an 
attacker to reuse old session credentials or session IDs for authorization. 
Insufficient Session Expiration exposes an application to attacks that steal or 
reuse a user’s session identifiers.

INSUFFICIENT SESSION INVALIDATION
A user should be able to invalidate a session simply by logging out. This 
error occurs when the application removes the session cookie but doesn’t 
invalidate the session.

INTEGER OVERFLOWS
Integer Overflow occurs when the result of an arithmetic operation such 
as multiplication or addition exceeds the maximum size of the integer type 
used to store it. Attackers can use these conditions to influence the value of 
variables in ways that the programmer did not intend.



© 2019 WhiteHat Security, Inc. 31

INVALID HTTP METHOD USAGE
HTTP Methods can be used inappropriately and compromise the integrity 
of the application. For example, the GET method is not intended to 
contain sensitive information or change the site state. Doing so increases 
vulnerability to Cross Site Request Forgery, Information Leakage, and 
accidental damage by crawlers.

LDAP INJECTION
LDAP Injection uses the open standard Lightweight Directory Access 
Protocol (LDAP) to preform exploits similar to those used in SQL Injection.

MAIL COMMAND INJECTION
Mail Command Injection is an attack technique used to exploit mail servers 
and webmail applications that construct IMAP/SMTP statements from user-
supplied input that is not properly sanitized.

NON-HTTP ONLY SESSION COOKIE
A session cookie value can be accessed and manipulated by malicious 
client-side Javascript. Setting the “HttpOnly” attribute instructs the User-
Agent to restrict access to the cookie only for use with HTTP messages.

NULL BYTE INJECTION
Null Byte Injection is an active exploitation technique used to bypass sanity 
checking filters in infrastructure by adding URL-encoded null byte characters 
(i.e. %00, or 0x00 in hex) to the user-supplied data.

OS COMMAND INJECTION
OS Command Injection, aka OS Commanding, is an attack technique used 
for unauthorized execution of operating system commands.

PATH TRAVERSAL
(see Directory Traversal)

PERSISTENT SESSION COOKIE
This error occurs when cookies whose values contain sensitive data have a 
future expiration date and do not expire with the session.

PERSONALLY IDENTIFIABLE INFORMATION
Personally Identifiable Information (PII) is information that identifies a 
single person or can be used with other information sources to identify a 
single person. Examples of PII include: name, age, birth date, birth place, 
credit card number, criminal record, driver’s license number, education 
history, genotype, social security number, race, place of residence, vehicle 
identification number, and work history.

PREDICTABLE RESOURCE LOCATION
Predictable Resource Location allows an attacker, by making educated 
guesses via brute forcing, to guess file and directory names not intended 
for public viewing. Brute forcing filenames is easy because files/paths 
often have common naming conventions and reside in standard locations. 
Predictable Resource Location is also known as Forced Browsing, Forceful 
Browsing, File Enumeration, or Directory Enumeration.

REMOTE FILE INCLUSION
Remote File Inclusion (RFI) exploits dynamic file inclusion mechanisms in 
applications. When a user input specifies a file inclusion; the application can 
be tricked into including remote files with malicious code.

ROUTING DETOUR
Routing Detour is a type of “man-in-the-middle” attack in which 
intermediaries can be injected or hijacked in order to route sensitive 
messages to an outside location in such a way that the receiving application 
is unaware that it has occurred.

SERVER MISCONFIGURATION
Configuration weaknesses found in servers and application servers can 
trivially allow abuse of default functionality.

SESSION FIXATION
Session Fixation is an attack that forces a user’s session ID to a known value. 
After a user’s session ID has been fixed, the attacker will wait for that user to 
login and use the predefined session ID value to assume the same online 
identity. Session Fixation provides a much wider window of opportunity than 
would be provided by stealing a user’s session ID after they have logged 
into an application.

SESSION / CREDENTIAL PREDICTION
Session or Credential Prediction (aka Session Hijacking) is a method of 
hijacking or impersonating an authorized application user by deducing or 
guessing the unique value that identifies a particular session or user. This 
can allow attackers to issue site requests with the compromised user’s 
privileges.

SOAP ARRAY ABUSE
In XML SOAP Array Abuse, a service that expects an array can become 
the target of an XML DoS attack by forcing the SOAP server to build a 
huge array in the machine’s memory, thus inflicting a DoS condition on the 
machine due to the memory pre-allocation.

SQL INJECTION
SQL Injection exploits applications that construct SQL statements from user-
supplied input. When successful, the attacker is able to execute arbitrary 
SQL statements against the database.

SSI INJECTION
Server-Side Include Injection is a server-side exploit that allows an attacker 
to send code to an application to be executed later, locally by the server. 
SSI Injection exploits an application’s failure to sanitize user-supplied data 
before inserting the data into a server-side interpreted HTML file.

UNPATCHED LIBRARY
All software components, runtime environments, platforms, and libraries 
need to be kept up to the very latest version of security fixes, to avoid 
exploits written specifically against known out-of-date library vulnerabilities.

UNSECURED SESSION COOKIE
If a session cookie does not have the secure attribute enabled, it is not 
encrypted between the client and the server. This means the cookie is 
exposed to theft.

URL REDIRECTOR ABUSE
URL redirectors can be abused to cause an attacker’s URL to appear to be 
endorsed by the legitimate site, tricking victims into believing that they are 
navigating to a site other than the true destination. (See Content Spoofing)



The DevSecOps Approach

© 2019 WhiteHat Security, Inc.32

WEAK CIPHER STRENGTH
In the Weak Cipher Strength vulnerability, the application’s server allows the 
use of weak SSL/TLS ciphers which are typically weaker than 128 bits and do 
not use signed certificates (e.g. SHA-1 hash).

WEAK PASSWORD RECOVERY VALIDATION
An application permits an attacker to illegally obtain, change or recover 
another user’s password because the information required to validate a 
user’s identity for password recovery is either easily guessed or can be 
circumvented. Password recovery systems may be compromised through 
the use of brute force attacks, inherent system weaknesses, easily guessed 
or easily phished secret questions.

XML ATTRIBUTE BLOWUP
XML Attribute Blowup takes advantage of some XML parsers' parsing 
process. The attacker provides a malicious XML document, which vulnerable 
XML parsers process inefficiently, resulting in severe CPU load. Many 
attributes are included in the same XML node, resulting in a denial of service 
condition.

XML ENTITY EXPANSION
XML Entity Expansion exploits a capability of XML Document Type 
Definitions that allows the creation of custom macros called “entities.” By 
recursively defining a set of custom entities at the top of a document, an 
attacker can overwhelm parsers that attempt to completely resolve these 
entities, resulting in a denial of service condition.

XML EXTERNAL ENTITIES
An XML External Entities attack takes advantage of a feature of XML that 
allows you to build documents dynamically at the time of processing. It uses 
an XML message that can provide data explicitly or points to a URL where 
the data exists. In the attack external entities may replace the entity value 
with malicious data. Alternately, referrals may compromise the security of the 
data to which the server/XML application has access.

XML INJECTION
XML Injection manipulates or compromises the logic of an XML application 
or service. The injection of unintended XML content and/or structures into an 
XML message can alter the intended logic of the application. Furthermore, 
XML Injection can cause the insertion of malicious content into the resulting 
message/document.

XPATH INJECTION
XPath Injection exploits applications that construct XPath (XML Path 
Language) queries from user-supplied input to query or navigate XML 
documents.

XQUERY INJECTION 
XQuery Injection is a variant of the classic SQL injection attack against the 
XML XQuery Language. XQuery Injection uses improperly validated data that 
is passed to XQuery commands.



About WhiteHat Security

WhiteHat Security has honed its 18 years of experience in the application security space to 
provide developers and businesses with the tools and services they need to write and deliver the 
most secure software at the speed of business. The award-winning WhiteHat Application Security 
Platform, which has been featured on the Gartner Magic Quadrant for Application Security Testing 
for the last five years, is empowering DevSecOps by continuously assessing the risk for 
organizations’ software assets and helping them to embed security throughout the software life 
cycle (SLC). The company is an independent, wholly-owned subsidiary of NTT Security and is 
based in San Jose, California, with regional o�ces across the U.S. and Europe.

www.whitehatsec.com       © 2019 WhiteHat Security, Inc. All rights reserved.


	Foreword
	Why Read this Report
	WhiteHat’s Methodology
	Three-Phased DevSecOps Approach for Secure Applications
	Risk Discovery and Management
	Analysis & Insight

	Release Assurance
	Analysis & Insight

	Developer Enablement
	Analysis & Insight
	Typical DevSecOps Outcomes

	Lessons Learned
	Recommendations
	Innovation in Application Security
	Appendix - Glossary of Terms


