Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“जाने का अधिकार, जीने का अधिकार”
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

“ज्ञान से एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda
“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—NitiSatakam
“Knowledge is such a treasure which cannot be stolen”
Indian Standard

RESILIENT SEATED CAST IRON AIR RELIEF VALVES
FOR WATER WORKS PURPOSES — SPECIFICATION

ICS 23.060.99

© BIS 2000

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

October 2000
AMENDMENT NO. 1 SEPTEMBER 2003 TO IS 14845 : 2000 RESILIENT SEATED CAST IRON AIR RELIEF VALVES FOR WATER WORKS PURPOSES — SPECIFICATION

(Second cover page, Foreword, para 2, lines 4 and 5) — Delete ‘Typical layouts are shown in Fig. 6, 7, 8, 9, 10 and 11’.

(CED 3) Reprography Unit, BIS, New Delhi, India
FOREWORD

This Indian Standard was adopted by the Bureau of Indian Standards, after the draft finalized by the Sanitary Appliances and Water Fittings Sectional Committee had been approved by the Civil Engineering Division Council.

Air relief valves are widely used in clear water mains in order to evacuate accumulated air under pressure, for exhaust of air when such mains are charged with water and for ventilating the mains when they are being emptied of water. This standard therefore has been formulated with a view to guide the manufacturers and purchasers in the selection of appropriate type/size/rating of valves for the intended application. Typical layouts are shown in Fig. 6, 7, 8, 9, 10 and 11.

In the formulation of this standard the experience of the manufacturers and user of such valves has been kept in view.

Certain technical details required to be supplied by the purchaser at the time of enquiry or placing orders given in Annex A of this standard.

The composition of the technical committee responsible for the formulation of this standard is given at Annex C.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test or analysis, shall be rounded off in accordance with IS 2:1960 ‘Rules for rounding off numerical values (revised)’. The number of significant places retained in the rounded off value should be the same as that of the specified values in this standard.
Indian Standard

RESILIENT SEATED CAST IRON AIR RELIEF VALVES FOR WATER WORKS PURPOSES — SPECIFICATION

1 SCOPE
This Indian Standard covers requirement of single air valve (small and large orifice) double air valves (small and large orifice with or without integral isolating valve) and kinetic air valves with or without separate isolating sluice valve for use on water mains.

2 REFERENCES
The Indian Standards given in Annex B contain provisions which through reference in this text, constitute provision of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this standard are encouraged to investigate the possibility of applying the most recent editions of the standards.

3 TYPES
 a) Single air valve
 Small orifice type (S 1)
 Large orifice type (S 2)
 b) Double air valve
 Standard type with in-built isolating valve (DS 1), or without isolating valves (DS 2)
 c) Kinetic air valve
 Kinetic air valve (DK)

4 NOMINAL PRESSURES
Air valves shall be designated by nominal pressure (PN) defined as maximum permissible gauge working pressure in MPa as follows:

- PN 1.0 and PN 1.6

5 NOMINAL SIZES
Air valves shall be of the following sizes:

 a) Single air valve S 1 (Small orifice type) 15, 25, 40 mm
 b) Single air valve S 2 (Large orifice type) 25, 40, 50 mm
 c) Double air valve (All types) 40, 50, 80, 100, 150 and 200 mm
 d) Kinetic air valve (DK) 40, 50, 80, 100, 150 and 200 mm

6 TEMPERATURE RATING
All air valves shall be suitable for continuous use at their PN rating within the temperature of 45°C.

7 SERVICE APPLICATION
7.1 Single Air Valve (Small Orifice)
For automatically releasing air which may accumulate under pressure in a section of pipe line during normal working condition.

7.2 Single Air Valve (Large Orifice)
For automatically releasing/admitting air that may accumulate under pressure in a section of pipe line at the time of initial charging or draining of mains.

7.3 Double Air Valves
These valves are simply a combination of small and large orifice air valves with common connection to the main, small orifice function being similar to that of a single air valve. Large orifice serves for automatically exhausting air when a pipe is being filled with water, or automatically ventilating a pipe when it is being emptied of water.

7.4 Kinetic Air Valves
These valves are essentially the same as the conventional double air valves but with certain refinements and are suitable for high head pipe lines where high rates of air discharge and ventilation is required.

8 END CONNECTION
8.1 End connection of single air valves (small and large orifices) shall be either flanged according to IS 6418 or screwed. Screwed type shall have external pipe threads conforming to IS 554.

8.2 Double air valves shall have flange ends machined and drilled according to IS 1538 (Parts IV and VI) and IS 6418.

8.3 For kinetic air valves, all flanges including that of the isolating sluice valve shall be machined and drilled in accordance with IS 1538 (Parts IV and VI). Unless otherwise agreed in between the manufacturer and the purchaser, flange for 50-mm dia air valves shall be in accordance with IS 780. Flanges shall be at right angle to the axis of the inlet bore and also concentric to bore. Flange bolt holes shall be drilled off centre.

9 MATERIAL
9.1 The material for different components of valves shall conform to the requirements given in Table 1.
Table 1 Materials for Body and Component Parts

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Component / Body</th>
<th>Basic</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Material</td>
<td>Grade or Designation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IS No.</td>
<td>Ref to IS No.</td>
</tr>
<tr>
<td>i)</td>
<td>Body, cover, valve disk, stuffing box, valve guide, cowl, gland, cap, joint support ring</td>
<td>Grey cast iron</td>
<td>210 FG 200</td>
</tr>
<tr>
<td>ii)</td>
<td>Stem</td>
<td>High tensile brass</td>
<td>320 HTB 1 or HTB 2</td>
</tr>
<tr>
<td>iii)</td>
<td>Low pressure seat ring and face ring</td>
<td>Natural rubber</td>
<td>11855 EPDM</td>
</tr>
<tr>
<td>iv)</td>
<td>High pressure orifice</td>
<td>Leaded tin bronze</td>
<td>318 LTB - 2</td>
</tr>
<tr>
<td>v)</td>
<td>Body seat ring</td>
<td>Leaded tin bronze</td>
<td>318 LTB - 2</td>
</tr>
<tr>
<td>vi)</td>
<td>Bolts</td>
<td>Carbon steel</td>
<td>1363 Class 4.6</td>
</tr>
<tr>
<td>vii)</td>
<td>Nuts</td>
<td>Carbon steel</td>
<td>1363 Class 4</td>
</tr>
<tr>
<td>viii)</td>
<td>Gasket</td>
<td>Rubber</td>
<td>638 Type B</td>
</tr>
<tr>
<td>ix)</td>
<td>Gland packing</td>
<td>Jute hemp</td>
<td>5414 Type III</td>
</tr>
<tr>
<td>x)</td>
<td>Float (Low pressure orifice)</td>
<td>Timber core with vulcanite coating</td>
<td></td>
</tr>
<tr>
<td>xi)</td>
<td>Float (High pressure orifice)</td>
<td>Timber core with rubber coating</td>
<td></td>
</tr>
<tr>
<td>xii)</td>
<td>Float guide</td>
<td>Leaded tin bronze</td>
<td>318 LTB-2</td>
</tr>
</tbody>
</table>

Where alternative materials are specified, or other suitable materials are to be used, such shall be in agreement with the purchaser.

10 DESIGN AND MANUFACTURE

10.1 Typical illustration of single air valves, double air valves and kinetic air valves are given in Fig. 1, 2, 3A, 3B and 4.

10.2 Body

10.2.1 Body design shall ensure that there are no recesses or pockets, sheltering escaping air. Also the large orifice chamber in the ordinary (non-kinetic) design shall be such that the floating ball inside is free to drop to the bottom without any obstruction when the water level goes down.

10.2.2 For kinetic air valve, valve body shall be designed in such a way that turbulent air at the time of filling of pipe shall not circulate and cause the ball to be caught in the discharging air stream and blowing the valve shut prematurely. The cone angle of the low-pressure chamber shall be such that even at critical velocity of air escaping at 344 m/sec the total impact force on the vulcanite covered ball is less than the suction force on the annular area between the ball and the cone. Normal range of cone angle is 45° to 60°.

10.2.3 The thickness of metal shall be maintained throughout the section as uniform as practicable to avoid strains set up due to sudden changes of cross sections. Where section changes are unavoidable, generous fillets and radii shall be provided.

10.2.4 Minimum body thickness shall be as indicated in Table 2.

10.2.5 In high pressure chamber integrally cast and duly machined vertical lugs (min 3 nos) to be provided to guide the float during operation.

10.2.6 Guides for Small Orifice Floats

Suitable gunmetal or brass lined guides may be provided for small orifice floats and the clearance between the floats and the guides shall not exceed 3 mm per side.

10.3 Covers of Large Orifice Chamber

The cover for large orifice chamber shall be of sufficient thickness so as to withstand the full operating thrust in working condition. Profile of orifice in cover shall be compatible with that of low pressure seat ring.

10.4 High Pressure Orifice

The high pressure chamber having small orifice shall be so designed that the orifice is effectively sealed in
Table 2 Body Thickness

(Clauses 10.2.4)

All dimensions in millimetre.

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>Single Air Valve</th>
<th>Double Air Valve (PN 1 & 2)</th>
<th>Kinetic Air Valve (DK)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Orifice (PN 1 & PN 1.6)</td>
<td>Large Orifice (PN 1 & PN 1.6)</td>
<td>PN 1.0</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>25</td>
<td>8</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>80</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>100</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>150</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
working condition. The orifice shall be of size not less than 2.5 mm and tapering to 10 mm suitable to release accumulated air within the pipe. The end of orifice shall be carefully profiled to avoid damage to the float surface. High pressure orifice may be fitted from bottom side of cover.

10.5 Floats

10.5.1 Minimum float diameters shall be as indicated in Table 3.

10.5.2 The buoyancy of the floats shall ensure effective sealing of large orifice even at low pressure.

10.5.3 The inner core of the floats shall be made from seasoned wood or any other synthetic material having

Table 3 Float Diameter

(Clause 10.5.1)

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>Single Air Valve</th>
<th>Double Air Valve</th>
<th>Kinetic Air Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Orifice</td>
<td>Large Orifice</td>
<td>Small Orifice</td>
</tr>
<tr>
<td>15</td>
<td>75</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>100</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>-</td>
<td>115</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>-</td>
<td>125</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>140</td>
<td>250</td>
</tr>
</tbody>
</table>

All dimensions in millimetres.

Fig. 2 Typical Cross-Sectional Arrangement for Single Air Valve (Large Orifice) S 2
LEGEND
1) BODY
2) HIGH PRESSURE COVER
3) LOW PRESSURE COVER
4) VALVE
5) VALVE HOLDER
6) COWL
7) JOINT SUPPORT RING
8) VALVE COVER
9) GLAND
10) CAP
11) SEAT RING
12) NUT FOR SPINDLE
13) SPINDLE
14) H.P ORIFICE COVER
15) H.P ORIFICE PLUG
16) BALL FOR H P CHAMBER (FLOAT)
17) BALL FOR L.P CHAMBER (FLOAT)
18) VALVE DISC
19) L.P SEAT RING
20) PACKINGS
21) GASKET
22) BOLTS & NUTS
23) GUIDE BUSH

<table>
<thead>
<tr>
<th>VALVE SIZE</th>
<th>A (Min)</th>
<th>B (Min)</th>
<th>C (Min)</th>
<th>SUITABLE FOR MAIN SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>442</td>
<td>210</td>
<td>371</td>
<td>UP TO 100</td>
</tr>
<tr>
<td>50</td>
<td>442</td>
<td>210</td>
<td>407</td>
<td>125 TO 200</td>
</tr>
<tr>
<td>80</td>
<td>504</td>
<td>236</td>
<td>431</td>
<td>225 TO 350</td>
</tr>
<tr>
<td>100</td>
<td>634</td>
<td>280</td>
<td>501</td>
<td>400 TO 500</td>
</tr>
<tr>
<td>150</td>
<td>862</td>
<td>430</td>
<td>620</td>
<td>600 TO 900</td>
</tr>
<tr>
<td>200</td>
<td>988</td>
<td>506</td>
<td>735</td>
<td>1 000 TO 1 200</td>
</tr>
</tbody>
</table>

All dimensions in millimetres.

FIG. 3A TYPICAL CROSS-SECTIONAL ARRANGEMENT FOR STANDARD DOUBLE AIR VALVE WITH IN-BUILT ISOLATING VALVE (DS 1)
Legend

1) BODY
2) HIGH PRESSURE COVER
3) LOW PRESSURE COVER
4) COWL
5) JOINT SUPPORT RING
6) COVER
7) H.P. ORIFICE COVER
8) H.P. ORIFICE PLUG
9) BALL FOR H.P. CHAMBER (FLOAT)
10) BALL FOR L.P. CHAMBER (FLOAT)
11) L.P. SEAT RING
12) GASKET
13) BOLTS & NUTS
14) GUIDE BUSH

<table>
<thead>
<tr>
<th>VALVE SIZE</th>
<th>A (Min)</th>
<th>B (Min)</th>
<th>C (Min)</th>
<th>SUITABLE FOR MAIN SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>442</td>
<td>210</td>
<td>224</td>
<td>UP TO 100</td>
</tr>
<tr>
<td>50</td>
<td>442</td>
<td>210</td>
<td>264</td>
<td>125 TO 200</td>
</tr>
<tr>
<td>80</td>
<td>504</td>
<td>236</td>
<td>287</td>
<td>225 TO 350</td>
</tr>
<tr>
<td>100</td>
<td>634</td>
<td>280</td>
<td>356</td>
<td>400 TO 500</td>
</tr>
<tr>
<td>150</td>
<td>862</td>
<td>430</td>
<td>476</td>
<td>600 TO 900</td>
</tr>
<tr>
<td>200</td>
<td>988</td>
<td>506</td>
<td>580</td>
<td>1000 TO 1200</td>
</tr>
</tbody>
</table>

All dimensions in millimetres.

Fig. 3B Typical Cross-Sectional Arrangement for Standard Double Air Valve with In-Built Isolating Valve (DS 2)

sufficient bearing strength and giving an equivalent specific gravity.

10.5.4 Shore hardness of the outer coating of the large orifice float (L.P. Orifice) shall be 100 ± 5.

10.5.5 Shore hardness of the outer cover of the small orifice floats (H.P. Orifice) shall be 80 ± 5.

10.5.6 The specific gravity of float shall be 0.7 to 0.8, and the homogeneity of the float (ball) is an essential quality in the smooth operation of an air valve.

10.5.7 The diameter of ball in high pressure chamber is related to the maximum working pressure and for a given size of orifice increases with pressure. The alternative to a larger diameter ball is a smaller diameter orifice. However too small an orifice diameter shall be avoided for eliminating mechanical problem.

10.6 Low Pressure Seat Ring

10.6.1 Low pressure seat ring shall be made of natural or synthetic rubber having a shore hardness of 70 ± 5. The central orifice shall be profiled for maximum discharge in any given condition of pressure differential between the chamber and atmosphere.

10.6.2 Thickness of ring and orifice size shall be as indicated in Table 4.
Table 4 Thickness and Orifice Size of Low Pressure Seat Ring

(Clause 10.6.2)

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>Low Pressure Seat Thickness (Min)</th>
<th>Orifice Size (Min)</th>
<th>Suitable For Main Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>5</td>
<td>37</td>
<td>Up to 100</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>37</td>
<td>125 to 200</td>
</tr>
<tr>
<td>80</td>
<td>6</td>
<td>49</td>
<td>225 to 350</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>65</td>
<td>400 to 500</td>
</tr>
<tr>
<td>150</td>
<td>8</td>
<td>110</td>
<td>600 to 900</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>134</td>
<td>1000 to 1200</td>
</tr>
</tbody>
</table>

All dimensions in millimetres.

10.6.3 The inner profile of the seat ring shall make contact with the float in the large orifice chamber and it's profile shall match with the machined profile in low pressure cover so as to be able to withstand the bearing load under working condition without any deterioration in the quality.

10.6.4 Low pressure seat ring may also be manufactured with impregnation of metallic plate along with fabric layer inside to avoid sagging when float is not sealing the orifice. In this case it is not necessary to use joint support ring underneath low pressure seat ring.

10.7 Joint Supporting Ring

The low pressure seat ring shall be held securely in place under the low pressure cover by a joint support ring to prevent it from sagging when the float is not sealing the orifice.
10.8 Cowl

10.8.1 A cowl is basically a shield for the protection of low pressure, large orifice chamber, seat ring and the float. It shall be designed accordingly to prevent direct ingress of foreign matter inside and protect damageable parts from the ill effects of sunrays, monsoon and other damaging elements. There shall be sufficient clearance between the orifice and the shield to ensure easy passage of air out of (and into) the valve chamber under a given pressure differential.

10.9 Gaskets or Jointing Material

Gaskets used between the flanges of component parts of the valves shall have minimum 3 mm thickness.

10.10 Bolts and Nuts

Bolts and nuts shall conform to IS 1363.

10.11 Built-in Isolating Valves

10.11.1 Double Air Valve

10.11.1.1 Where screw down type isolating valve form an integral part of the double air valve materials of construction for this valve shall be selected from those listed in Table 1.

10.11.1.2 Lift of isolating valve shall be \((d/4)+2~\text{mm}\) minimum where 'd' is nominal size of the valve.

10.11.1.3 Diameter of spindle measured at stuffing box shall not be less than that specified in Table 5.

11 TESTING AND PERFORMANCE

11.1 When tested as per 12.4.1, the air passage and the function of ball floats in a valve shall be satisfactory, and the valve shall work smoothly.

11.2 Hydrostatic test of valve body, when tested in accordance with 12.4.4 shall reveal no leakage through pressure sustaining components and joints. There shall be no permanent deformation of any part.

12.3 When tested in accordance with 12.4.2 and 12.4.3 the valve seat body shall not show any leakage.

12.4 Function and Performance Test

12.4.1 The valve shall be fitted on the test bench as shown in Fig. 5. The pressure of the water in pipe shall be developed to working pressure, and the main valve or cock shall be gradually opened to check the air release and float function. Compressed air shall then be slowly injected into the valve through underside of the valve to check the function of the floats. In case of large orifice single air valve the pressure of the water in the pipe shall be developed to working pressure. The float shall automatically lift and seal against the seal. There shall be no sign of leakage.

12.4.2 High Pressure Orifice Seat Test

Subsequent to high pressure orifice performance test, hydraulic pressure shall be reduced up to half of the working pressure to check leakage of orifice seat for a duration of three minutes.

12.4.3 Low Pressure Orifice Seat Test

Subsequent to high pressure orifice performance test, hydraulic pressure shall be reduced up to half of the working pressure to check leakage of orifice seat for a duration of three minutes.

12.4.4 Body Test

The valve body (without cover, ball floats) shall be covered by a blank flange, keeping isolating valve/cock open. Hydrostatic pressure of 1.5 times the pressure rating of the valve shall be applied for a duration of 5 min to check the water tightness of the body.

13 INSPECTION

13.1 If inspection is required, this shall be stated in the enquiry and order. The purchaser or his authorised representative shall have access to the manufacturer's works at all reasonable times to inspect the assembled

Table 5 Spindle Diameters of Isolating Valve

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>Spindle Diameter (Mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0 MPa</td>
</tr>
<tr>
<td>40</td>
<td>18</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
</tr>
<tr>
<td>80</td>
<td>22</td>
</tr>
<tr>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>150</td>
<td>28</td>
</tr>
<tr>
<td>200</td>
<td>32</td>
</tr>
</tbody>
</table>

10.11.1.4 Valve cap

The isolating valve shall be operated by a removable key and the spindle shall be provided with a cap of dimensions as given in Table 6 and shall be secured by set screws. The direction of closing shall be indicated on the cap.

10.11.1.5 Direction of operation

Isolating sluice valves shall be closed by turning the operating key in clockwise direction, unless otherwise specified.

11 FINISH

The finish of the castings shall be smooth and free from blow-hole, crack, flaw, burr and other defects.
Table 6 Cap for Isolating Valve
(Clauses 10.11.1.4)

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>'A' SQ</th>
<th>4B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>15</td>
<td>50</td>
<td>22</td>
<td>32</td>
<td>88</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>19</td>
<td>50</td>
<td>26</td>
<td>32</td>
<td>88</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>19</td>
<td>50</td>
<td>26</td>
<td>32</td>
<td>88</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>24</td>
<td>60</td>
<td>40</td>
<td>50</td>
<td>116</td>
<td>60</td>
</tr>
<tr>
<td>150</td>
<td>24</td>
<td>60</td>
<td>44</td>
<td>50</td>
<td>116</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>28</td>
<td>65</td>
<td>44</td>
<td>55</td>
<td>121</td>
<td>60</td>
</tr>
</tbody>
</table>

valves to his order.

13.2 Protection of Exposed Machined Surface
When required, exposed-machined surfaces shall be coated with suitable rust preventive compound.

14 COATING
14.1 Coating material shall not impart any taste and odour to the water. It shall not contain any ingredients injurious to health, neither shall it be affected by water after drying, not shall it have any ill effect on the quality of water, it shall not also be affected by heat and cold.

14.2 Two coats of black japan conforming to Type B of IS 341 or paint conforming to Type 2 of IS 9862 shall be applied as specified by the purchaser.

14.3 Coating Method
When black paint as per IS 9862 is used coating shall be applied by brushing or spraying. When coating
material is epoxy paint, the method of application shall be specified by the purchaser.

14.4 Appearance After Coating
The finished coated surface shall be free from base spots, bubble blistering, sticking of foreign matter, excess floating and other harmful defects.

15 MARKING
15.1 Each valve body shall be permanently marked with a plate securely fixed to the body with the following information:
 a) Nominal size;
 b) Nominal pressure rating;
 c) Type of valve:
 i) Single air valve S1, S2, etc
 ii) Double air valve DS1, DS2, etc
 iii) Kinetic air valve (DK)
 d) Manufacturers name or trade-mark; and
 e) SI No. and year of manufacture.
15.2 Each sluice valve may also be marked with the Standard Mark.

15.2.1 The use of Standard Mark is governed by the provision of the Bureau of Indian Standards Act, 1986 and the Rules and Regulations made thereunder. Details of conditions under which a licence for the use of the Standard Mark may be granted to manufacturers or producers may be obtained from the Bureau of Indian Standards.

16 PACKING AND STORAGE

16.1 Valves shall be so packed as to minimize the possibility of damage, during storage or transit. If special packaging is necessary the purchaser shall specify his requirement.

16.2 Valves shall be stored in roofed stores.

17 PREPARATION FOR DESPATCH

17.1 Each valve shall be drained, cleaned, dressed inside and outside and prepared to meet appearance specification and suitably protected for despatch in such a way as to minimize the possibility of damage and deterioration during transit and storage.

ANNEX A

(Foreword)

ENQUIRY/ORDER INFORMATION

The following shall be stated in the enquiry/order:

a) Type of valve;
b) Nominal diameter;
c) Nominal pressure;
d) End connections required;
e) If gunmetal/brass guides for floats are required;
f) If drain plugs are required;
g) If valves are to be protected, against electrostatic build-up;
h) Specific requirements of following things:
 i) Test certificates;
 ii) Inspection or certificate of conformity;
 iii) Painting, other than those specified;
 iv) Protection to exposed machined surfaces; and
 j) Isolating valve, if any, required.
ANNEX B

(Clause 2)

LIST OF REFERRED INDIAN STANDARDS

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 : 1978</td>
<td>Grey iron castings (third revision)</td>
<td>1570 (Part 5) : 1985</td>
<td>Pressure pipes for water, gas and sewage (third revision)</td>
</tr>
<tr>
<td>320 : 1980</td>
<td>High tensile brass rods and sections (other than forgings stock) (second revision)</td>
<td>5414 : 1969</td>
<td>Specification for corrosion resistant high alloy steel and nickel base casting for general applications</td>
</tr>
<tr>
<td>554 : 1985</td>
<td>Dimensions for pipe threads where pressure tight joints are required on the threads (third revision)</td>
<td>6603 : 1972</td>
<td>Cast iron and malleable cast iron flanges for general engineering purposes</td>
</tr>
<tr>
<td>638 : 1979</td>
<td>Sheet rubber jointing and rubber insertion jointing (second revision)</td>
<td>9862 : 1981</td>
<td>Stainless steel bars and flats</td>
</tr>
<tr>
<td>780 : 1984</td>
<td>Specification for sluice valves for water works purposes *(50 to 300 mm size) (sixth revision)</td>
<td></td>
<td>Ready mixed paint, brushing, bituminous, black lead-free, acid, alkali, water and chlorine resisting</td>
</tr>
<tr>
<td>1363 (Parts 1 to 3) : 1992</td>
<td>Hexagonal head bolts, screws and nut of product grade C (third revision)</td>
<td>11855 : 1986</td>
<td>General requirements for rubber seals for hydraulic gates</td>
</tr>
</tbody>
</table>

ANNEX C

(Foreword)

COMMITTEE COMPOSITION

Sanitary Appliances and Water Fittings Sectional Committee, CED 3

- **Chairman**
 - Smt S. K. Chandra

- **Members**
 - Shri V. P. Bhaskar
 - Shri A. P. Jagathy
 - Smt V. K. Seth (Field Officer) *(Alternate)*
 - Smt V. K. Seth *(Alternate)*
 - Shri S. K. Panigrahi *(Alternate)*
 - Shri S. K. Pant *(Alternate)*
 - Shri S. R. Kumar *(Alternate)*
 - Dr. S. K. Gupta *(Alternate)*

- **Representing**
 - Delhi Jal Board, New Delhi
 - Bhaskar Refractories & Stoneware Pipes Pvt Ltd, Faridabad
 - Brihanmumbai Municipal Corporation, Mumbai
 - Building Materials & Technology Promotion Council, New Delhi
 - Capstan Meters (India) Ltd, Jaipur
 - Central Public Health and Environmental Engineering Organization, New Delhi
 - Central Building Research Institute, Roorkee
 - Central Glass & Ceramic Research Institute (CSIR), Calcutta

(Continued on page 13)
Members

Dr S. K. Nayak (Alternate)
Dr S. C. Shit (Alternate)

SSW (NDZ-I)

SSW (NDZ-II) (Alternate)

Chief Engineer

Shri M. Gangaraju

Shri P. R. Singh (Alternate)

Shri L. N. Kapoor

Shri G. Radhakrishnan Rao

Shri S. Sivakumar (Alternate)

Shri L. D. Siroma

Shri S. K. Kalla (Alternate)

Shri J. R. Aggarwal

Shri Sanjay Aggarwal (Alternate)

Shri R. K. Somany

Shri Sandop Somany (Alternate)

Shri K. Lakshmi Narmama

Shri A. Shaik (Alternate)

Shri K. K. Bhattacharyya

Shri S. Saha (Alternate)

Shri V. M. Aggarwal

Shri S. K. Neogi

Shri A. K. Sengupta (Alternate)

Shri V. K. Jain

Tech Member

Chief Engineer (PS&G) (Alternate)

Shri P. D. Kulkarni

Shri S. V. Jaday (Alternate)

Shri Hemant Borkar

Shri H. K. Arora (Alternate)

Chief Engineer (Rural)

Shri J. P. S. Jais

Shri Arun Kanti Biswas

Shri D. K. Kanungo

Shri R. Kapoor (Alternate)

Chief Engineer (West)

Shri V. K. Sinha

Shri W. L. Kishan (Alternate)

Superintendent Engineer TAC (Q/C)

Executive Engineer TAC (Alternate)

Shri S. Sengaram

Shri S. S. Sethi,

Director (Civil Engg)

Representing

Central Institute of Plastic Engineering and Technology, Chennai

Central Public Works Department, New Delhi

Delhi Development Authority, New Delhi

Directorate General of Supplies and Disposals, New Delhi

Delhi Jal Board, New Delhi

EID-Panin (India) Ltd, Ranpet

Engineer-in-Chief's Branch, New Delhi

Goverdhan Das P. A. (Calcutta), Calcutta

Hindustan Sanitaryware Industries Ltd, Bahadurgarh

Hindustan Shipyard Ltd, Vasakapamam

Indian Valve Pvt Ltd, Naski

Indian Water Works Association, New Delhi

Institution of Public Health Engineers India, Calcutta

Johnson Pedder Pvt Ltd, Mumbai

Kerala Water Authority, Trivandrum

Kirloskar Brothers Ltd, Pune

Leader Engineering Works, Jallandhar

Maharashtra WS & Sewerage Board, Mumbai

Metro Sanitations Pvt Ltd, New Delhi

National Environmental Engineering Research Institute, Calcutta

National Test House, Calcutta

Northern Railway, New Delhi

Schlumberger Industries (India) Ltd, Haryana

Uttar Pradesh Jal Nigam, Lucknow

Vetrotex Limited, Hyderabad

Director General, BIS (Ex officio Member)

Member Secretary

Shri W. R. Paul

Director (Civil Engg), BIS

Valves and Gates Subcommittee, CED 3:5

Convener

Hydraulic Engineer

Members

Deputy Chief

Shri P. K. Joshi

Director (Alternate)

Chief Engineer (Maintenance)

Deputy Chief Engineer (Common Services) (Alternate)

Works Manager

Building Materials and Technology Promotion Council, New Delhi

BSJ Shau Manufacturer (India), Nagpur

Bangalore Water Supply & Sewerage Board, Bangalore

Bombay Metals and Alloys Manufacturing Co Pvt Ltd, Mumbai

(Continued on page 14)
Representing

- Brihanmumbai Mahanagar Palika, Mumbai
- Central Public Works Department, New Delhi
- Directorate General of Supplies and Disposals, New Delhi
- Delhi Jal Board, New Delhi
- Fourth Engineering Pvt Ltd, Bangalore
- Geeta Valves and Engineering Pvt Ltd, Vadodara
- Government of India (Calcutta), Calcutta
- Indian Valve Pvt Ltd, Nasik
- Jaah Engineering Pvt Ltd, Indore
- Kerala Water Authority, Trivandrum
- Kirloskar Brothers Ltd, Pune
- Leader Valves Ltd, Jallandhar
- National Environmental Engineering Research Institute, Nagpur
- Oriental Castings Pvt Ltd, Sonapet
- R&D Multiples Metalcast Pvt Ltd, Mumbai
- Sant Valves Pvt Ltd, Jallandhar
- Tamil Nadu Water and Drainage Board, Chennai
- U.P. Jal Nigam, Lucknow

In personal capacity (B-38 A. Gangotri Enclave, Alaknanda, New Delhi-19)
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc : No. CED 3 (4551).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones: 323 01 31, 323 33 75, 323 94 02
Telegram : Manaksantha
(Common to all offices)

Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
 NEW DELHI 110 002
 Telephone : 323 76 17, 323 38 41
Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi
 CALCUTTA 700 054
 Telephone : 337 84 99, 337 85 61
 337 86 26, 337 91 20
Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022
 Telephone : 60 38 43
 60 28 25
Southern : C. I. T. Campus, IV Cross Road, CHENNAI 600 113
 Telephone : 235 02 16, 235 04 42
 235 15 19, 235 23 15
Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
 MUMBAI 400 093
 Telephone : 832 92 95, 832 78 58
 832 78 91, 832 78 92
Branches: AHMADABAD, BANGALORE, BHOPAL, BHUBANESHWAR, COIMBATORE,
 FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR,
 LUCKNOW, NAGPUR, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM

Printed at PRINTOGRAPH, New Delhi